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École normale supérieure,
Simon Fraser University,

mallmann@di.ens.fr

Claire Mathieu
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Abstract
Leskovec, Kleinberg and Faloutsos (2005) observed that
many social networks exhibit properties such as shrinking
(i.e. bounded) diameter, densification, and (power-law)
heavy tail degree distributions. To explain these phenomena,
they introduced a generative model, called the Forest Fire
model, and using simulations showed that this model indeed
exhibited these properties; however, proving this rigorously
was left as an open problem.

In this paper, we analyse one of these properties,

shrinking diameter. We define a restricted version of their

model that incorporates the main features that seem to

contribute towards this property, and prove that the graphs

generated by this model exhibit shrinking distance to the

seed graph. We prove that an even simpler model, the

random walk model, already exhibits this phenomenon.

1 Introduction

Ten years ago, Leskovec, Kleinberg and Faloutsos in-
troduced the Forest Fire model, a generative model to
understand the dynamics of social networks over a long
period [22]. They examined real-world networks such as
the ArXiv Citation Graph, the Patents Citation Graph,
the Autonomous Systems Graph, Affiliation Graphs,
the Email Network, the IMDB Actors-to-Movies Net-
work, and a Product Recommendation Network. They
observed that these social networks become denser over
time. They also made the surprising observation that
the effective diameter of the networks “shrinks” over
time, instead of growing, as was previously thought.
They suggested the Forest Fire model as an attempt
to explain densification, shrinking diameter, and heavy-
tailed distributions of vertex indegrees and outdegrees.

In this model, the evolution initially starts with a
fixed seed graph. Time is discrete and at each time t a
node ut arrives, picks a random node, w, in the current
graph as its “ambassador” and connects to it. The
ambassador is considered burned and all other nodes
are considered unburnt. Node ut then generates two
random numbers x and y and selects x outgoing edges
from w and y in-coming edges to w incident to nodes
that have not yet been burned. If not enough outgoing
or incoming edges are available, ut selects as many as
it can. Let w1, w2, ..., wx+y denote the other endpoints
of the edges selected. ut connects to w1, w2, ..., wx+y,
marks them as burned, and then applies the previous
step recursively to each wi. Leskovec et al. observed
through simulation, that the Forest Fire Model appears
to have the shrinking diameter property, but leave open
the question of providing a rigorous proof:

“Rigorous analysis of the Forest Fire model ap-
pears to be quite difficult. However in simula-
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tions we find that [...] we can produce graphs
that [...] have diameter that decrease.”

This is the starting point of our work. In this paper,
we answer this question for a simplified version of the
model (Theorem 2.1) and for a variant (Theorem 2.3).

1.1 Related work

There is a extensive variety of models for generating
graphs of social networks, each reproducing a subset
of properties observed in real-world social networks.
The first major line of research considers static graphs,
where the number of nodes does not change over the
course of time: For example, in small-world like models,
there is a fixed underlying graph which is augmented
by additional links between the vertices. Kleinberg
proposed a particular random augmentation of links on
the grid and proved that this gives rise to a decentralised
greedy algorithms to find short paths among nodes [14].
In a more recent paper, Chaintreau et al. proposed a
different model, in which similar results are achieved,
where the grid is augmented with links generated by
random walks on the grid with occasional resets [4].

Other static models focus mainly on reproducing
both densification and small diameter simultaneously.
One example is the model by Leskovec et al. which uses
a matrix-operation, namely, the Kronecker product, to
generate self-similar graphs recursively [21]. They re-
produce a vast number of properties including heavy
tails for the in- and out-degree distribution and small di-
ameter. However, the deterministic nature of this model
produces unrealistic features. To remedy this drawback,
they propose the Stochastic Kronecker Graph (SKG)
model which has been very successful and is widely
used in simulations. One disadvantage of SKG is that
the adjustment of the parameters may have a huge in-
fluence on the properties of the resulting graphs. Re-
cently, Seshadhri et al. [29] showed that in fact the SKG
model bears resemblance to a variant of the Chung and
Lu model [6] which generalises classical random graph
models. Additionally, Seshadhri et al. [28] introduce
the Block Two-Level Erdős-Rényi (BTER) model, and
demonstrate that it captures observable properties of
many real-world social networks.

The second major research line considers graph
evolving over time where at each time step new vertices
and edges are added to the evolving graph. Barabási
et al. proposed the so called preferential attachment
model in which new vertices attach preferentially to ver-
tices with high degree, reproducing the power law distri-
bution over the in-degrees [2]. Building on preferential
attachment, Cooper and Frieze propose a model which
obeys power law as well as shrinking diameter and densi-

fication, unfortunately, it involves many parameters [7].
Recently, Avin et al. extended the preferential attach-
ment model to incorporate densification [1]. Krapivsky
and Redner investigated the development of random
networks as the attachment probability grows [18].

The authors of [15, 19] consider an edge copying
evolution in which, on arrival, a new vertex picks an
existing node and copies a subset of its neighbours.
Another model is the Community Guided Attachment
model, in which there is a hierarchical backbone struc-
ture that determines the linkage probabilities [22]. Lat-
tanzi and Sivakumar generate random graphs according
to an underlying affiliation network: Each node picks a
random subset of affiliations and in each affiliation the
nodes are connected as a clique (additionally, there is
a process of preferential attachment) [20]. They show
that this model exhibits shrinking diameter, densifica-
tion, and a heavy-tailed degree distribution. Moreover,
they connected the densification of the network to the
non-linearity of the core. The recursive search model
proposed by Vazquez is quite similar to the Forest-Fire
model [30]. In the recursive search model, vertices are
added to the graph one by one; when a new vertex ar-
rives it first connects to a random vertex and then recur-
sively connects to a subset of its unvisited neighbours.
The main difference is that in the forest fire model, the
average number of neighbours visited out of the current
node is constant, where as in the recursive search model
this is a constant fraction. Thus, presence of high-degree
nodes can make the two models quite different.

In the Random-Surfer Model (RSM), introduced by
Blum et al. [3], the nodes arrive one by one. Upon ar-
rival, each node performs several random walks from
random starting points and connects to the endpoints
of the performed walks. Our Random Walk Process
(RWP) share resemblance to the RSM. The main dif-
ference is that in the RWP a new node connects to all
the visited nodes in the random walk (instead of just
the endpoint). Chebolu and Melsted [5] proved that
the RSM and the PageRank-based selection model, pro-
posed by Pandurangan et al. [27], are equivalent and
also proved that the expected in-degree of vertices fol-
lows a powerlaw distribution. More recently, Mehrabian
and Wormald [24] proved logarithmic upper bounds for
the diameter in the RSM and the PageRank-based se-
lection model as well as a logarithmic lower bound for
a special case where the generated graph is a tree.

The only rigorous work thus far on the forest fire
model is by Mehrabian [24] who provide a logarithmic
upper bound to the diameter of the forest fire model as
well as for other well known models, e.g., the copying
model and the PageRank-based selection model.
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1.2 Results and techniques

We look at two simplifications of the original Forest
Fire model. We focus on understanding the asymp-
totic directed distance to the seed graph. Although
Leskovec et al. look at average diameter in the graph
(by ignoring the edge orientations), it is also natural to
look at the average directed distance to the seed graph.
Both the models we consider show that the asymptotic
average distance to the seed graph is constant.

In the first simplified model, which we call the
Forest Fire Process, the evolution initially starts with a
fixed seed graph, and time is discrete. At each time t, a
node ut arrives, and is connected to its “ambassador”,
a node w randomly selected from the nodes already in
the network (the direction of the added edge is from ut
to w). One says that the ambassador is burned. Node
ut then generates a random number x which is less than
or equal to the outdegree of w, and selects x neighbours
of w. The process continues recursively while never
burning the same node twice (see Algorithms 2.1 and 2.2
for more details).1

Compared to the model of Leskovec et al., the For-
est Fire Process has two differences: it only has forward
burning (no burning of edges going backwards); and it
has a slightly different burning distribution (binomial
versus truncated geometric). The model is parame-
terised by the average number of neighbours burned,
α. When α is larger than some constant, then the aver-
age distance to the seed is provably bounded assuming
the seed graph is a large enough cycle (Theorem 2.1);
when α is less than some other constant, then the aver-
age distance to the seed provably grows logarithmically
in the size of the graph (Theorem 2.2).

We then look at an even simpler model, which we
call the Random Walk Process and which, surprisingly,
still exhibits the same phenomenon. Surprising, because
the average outdegree is clearly constant, and the model
is local, yet the distance to the seed can be bounded.
It is parameterised by the average outdegree. For this
model our results are more precise: we show a threshold
phenomenon. If the average outdegree is less than 4,
then the distance to the seed grows logarithmically with
the size of the graph; if it’s greater than 4, then the
distance to the seed is bounded.

How do we prove bounded on the distance to
the seed is in the Forest Fire Process? It would be

1In fact, if one allows the same node to be burnt multiple times,

it is rather straightforward to see that one has bounded expected

distance to the seed graph as long as the average degree is greater
than 1: The process then looks much like a Galton-Watson process

with a positive probability of being infinite. Thus, this would

imply that some node in the seed graph would be reached by the
burning process with constant probability.

natural to show that the distance to the seed has a
drift downwards, but that’s not true in general. One
challenge in the analysis is the non-monotonicity of the
model; augmenting the graph by edges can make it
more unlikely for the next arriving vertex to be close
to the seed graph. From a mathematical viewpoint,
the main novelty of the paper is the definition of an
upper bound φ on the distance such that, conditioning
on any history, after two steps, the expected value of φ
decreases. Distance is one plus the minimum distance
of a neighbour, but in order to have monotonicity, φ
uses a maximum instead of a minimum.2 One might
think that bounding the distance by the φ value—
replacing a minimum by a maximum—gives a much
too loose approximation but surprisingly it works: in
the Forest Fire Process, not just the shortest path but
almost all paths to the seed are short. (The intuition
for the definition of φ is discussed in greater detail in
Section 4). Among other techniques, we reduce the
analysis of a DAG built on top of a tree to the analysis
of a DAG built on top of a line. We make frequent use
of coupling arguments, stochastic domination, Galton-
Watson branching processes, Hajek’s Theorem, and
other techniques from discrete probability.

Organisation: In Section 2, we formally define the
models we study. In Section 3, we look at simpler ver-
sions of these processes and show how they imply prop-
erties in the original versions through coupling. In Sec-
tion 4, we prove the main results for the Forest Fire pro-
cess. Section 5 proves the main results for the Random
Walk process. Finally, we conclude with a discussion.
Appendices provide background on Galton-Watson pro-
cesses (Section A) and other standard results from prob-
ability (Section B) that we use.

2 Models and Results

For a directed graph G, and a node u ∈ G, let
outdegG(u) denote the outdegree of the node u in G
and N (u) denote the (out)neighbours of u in G. For
u, v, let distG(u, v) denote the (directed) distance from
u to v in G.

For random variables X and Y we write X ≺ Y
if X is stochastically dominated by Y , i.e., for all k it
holds P(X ≥ k) ≤ P(Y ≥ k). We denote by Bernoulli(p)
the Bernoulli distribution with success probability p, by
Bin(n, p) the Binomial distribution, with n independent
trials, each having a success probability of p, by Geom(p)
the geometric distribution with success probability p,
i.e. for X ∼ Geom(p) we have P(X = i) = (1− p)ip for

2In fact, there is some carefully induced non-monotonicity in

the definition of φ, otherwise, we would not be able to bound its
expected value.
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i = 0, 1, . . . ., by Poisson(λ) the Poisson distribution with
mean λ, and by Uniform(b) the uniform distribution on
the elements {0, 1, 2, . . . , b}.

The Forest Fire Process is defined iteratively, start-
ing from a seed graph G0. Let Gt−1 = (Vt−1, Et−1) de-
note the graph at the end of round t− 1. In round t, a
new node ut arrives, and chooses a node ut′ ∈ Vt−1 uni-
formly at random. We call the node ut′ the ambassador
of the new node ut. After selecting the ambassador, we
burn the ambassador, i.e., we add the edge (ut, ut′) to
the graph. This then propagates as follows.

First choose a random subset of the edges of Gt−1
as active edges: every edge (u, v) of Gt−1 is active
independently with probability min{1, α

outdeg(u)}, where

α is a parameter of the model. Second, burn all vertices
of Gt−1, reachable from ut′ by following directed active
edges. Third, add an edge from ut to every burnt vertex.
This construction of Gt can be obtained by executing
Algorithms 2.1 and 2.2. Although, it is more natural to
view burning as a branching process, we describe it as a
percolation process in order to avoid the need to define
a specific order for the burning process.

Algorithm 2.1 Forest Fire Process (G0)

for t = 1, 2, . . . do
upon arrival of node ut at time t:

amb(ut)← a node chosen u.a.r. from Vt−1
S ← Burn(Gt−1, amb(ut))
Gt ← (Vt−1 ∪ {ut}, Et−1 ∪ {(ut, w) : w ∈ S})

Algorithm 2.2 Burn(G = (V,E), v)
// Outputs a subset of V reachable from v

H ← ∅
for all (w, x) ∈ E do

with probability min
{

1, α
outdegGt (w)

}
H ← H ∪ {(w, x)}

return {x ∈ V : there exists a directed path from v
to x in H}

We now state our two main results for the forest
fire model. The parameters α and the input graph G0

are fixed and we study the asymptotic properties of the
graph Gt. We have not optimised the constants in the
theorem statements and expect them to be far from
tight.

Theorem 2.1. For all α ≥ 100, if G0 is a directed cycle
with |G0| ≥ α20, the Forest Fire Process with parameters
α and G0 has the property of non-increasing distance to
G0, i.e., for every t,

E[distGt(u,G0)] = O(1),

where the expectation is over a node u, which is picked
uniformly at random in Gt, and dist(u,G0) is the
directed distance.3

Remark 1. It is not critical that G0 is a cycle. The
main requirement is that once the burning process
reaches G0, a large enough constant number of vertices
will be burnt. For example, G0 being an expander,
clique, or a strongly connected graph with large girth
of with |G0| large enough suffices. Simulations seem
to indicate that G0 being a single node also result in a
similar behaviour.

Theorem 2.2. For all α ≤ 1/(4e) and for all G0, the
Forest Fire Process with inputs α and G0 is such that

E[distGt(u,G0)] = Ω(log t),

using the same notation as above.

The Random Walk Process is defined similarly, param-
eterised by a number p, 0 < p < 1. Instead of the
burning process, the construction takes a random walk
from the starting node, whose length is distributed ge-
ometrically. Then, the process adds an edge from ut to
every vertex visited on the walk. We allow the graph to
be a directed multi-graph by allowing parallel edges to
vertices of G0. This construction of Gt can be obtained
by executing Algorithms 2.3 and 2.4.

Algorithm 2.3 Random Walk Process (G0)

for t = 1, 2, . . . do
upon arrival of node ut at time t:

amb(ut)← a node chosen u.a.r. from Vt−1
S ← Walk(Gt−1, amb(ut))
Gt ← (Vt−1 ∪ {ut}, Et−1 ∪ {(ut, w) : w ∈ S})

Algorithm 2.4 Walk(G, v)
// Outputs a subset of V reachable from v

S ← {v}
with probability 1− p

choose w ∈ N(v) uniformly at random
S ← S∪ Walk(G,w)

return S

Here are our two main results for the random walk
model.

Theorem 2.3. Let G0 be a strongly connected graph.
The Random Walk Process with parameters p < 1/3

3Note that dist(vt, G0), once defined at time t, never changes
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and G0 has the property of non-increasing distance to
G0, i.e., for every t,

E[distGt(u,G0)] = O(1),

using the same notation as above.

Theorem 2.4. For all G0, the Random Walk Process
with parameters p > 1/3 and G0, has the property that

E[distGt(u,G0)] = Ω(log t),

using the same notation as above.

3 Relating graph and line processes

3.1 Line processes

To prove the results for the Forest Fire and Random
Walk processes, we study related processes: the Line
Fire Process and the Line Walk Process, which we define
below. We state two corresponding technical lemmas
for each of these Processes; in the next sub-section, we
state coupling lemmas to relate the processes and prove
the results of Section 2, using the corresponding related
results on the line (whose proofs are deferred to later
sections), together with the coupling.

When comparing the graph processes, defined in
Section 2, (i.e. the Forest Fire Process and the Random
Walk Process) with the Line Processes (i.e. the Line
Fire Process and the Line Walk Process), the difference
is that while in the graph processes the first step is to
select the ambassador at random; in the line processes
we skip this step, and force each new node to select the
most recently added node as its ambassador, i.e., in the
line processes the first step is deterministic and follows
the line structure.

Algorithm 3.1 Line Fire Process(L0) and
Line Walk Process(L0)

for t = 1, 2, . . . do
upon arrival of node ut at time t:

amb(ut)← ut−1

S ←
{

Burn(Lt−1, amb(ut)) (Line Fire Proc.)

Walk(Lt−1, amb(ut)) (Line Walk Proc.)

Lt ← (Vt−1 ∪ {ut}, Et−1 ∪ {(ut, w) : w ∈ S})

Next, we state the relevant lemmas for the line fire
process, that are used to prove the above theorems. The
proofs of these lemmas are deferred to later sections.

Lemma 3.1. Let α ≥ 100 and let L0 be a directed cycle,
such that |L0| ≥ α20. Then the Line Fire Process has
the property that

∃c,∃γ < 1 s.t. ∀t ∀j P(distLt(vt, L0) > j) < cγj .

Lemma 3.2. For all L0, the Line Fire Process with
α ≤ α∗ and L0, has the property that

E[distLt(vt, L0)] = Ω(t),

Similarly, we state the relevant lemmas for the line
walk process.

Lemma 3.3. Let L0 be a strongly connected graph.
Then the line walk process with parameters p < 1/3 and
L0 has the property that

∃c,∃γ < 1 s.t. ∀t ∀j P(distLt(vt, L0) > j) < cγj .

Lemma 3.4. For all L0, the line fire process with pa-
rameters p > 1/3 and L0 is such that

E[distLt(vt, L0)] = Ω(t).

3.2 The ambassador graph

Definition 1. In the graph Gt generated by the the for-
est fire or random walk process, the ambassador graph
At is the sub-graph, consisting of edges (u, amb(u)) for
all nodes u 6∈ G0. These edges are referred to as ambas-
sador edges.

At is a forest of directed trees, rooted at vertices of
G0. First, we observe the following fact.

Fact 3.1. If (u, v) is an edge of Gt, then there exists an
integer k such that v = ambk(u), where ambk denotes
k iterative applications of amb(·).

To prove our lower bounds, we will use the following
bound on the expected distance to the root in the
ambassador graph. The following lemma was originally
proven in [8, Theorem 10].

Lemma 3.5. Let u be a vertex in the ambassador graph
At chosen uniformly at random. Then

E[distAt(u,G0)] = Θ(log t) .

Proof. Let vk denote the node which arrives at time k.
By convention the vertices of G0 arrive at time 0. Then

(3.1) E[distAt(u,G0)] ≤ 1

t

∑
k≤t

E[distAt(vk, G0)] .

For the upper bound, since distAt(vk, G0) is at most k
in the worst case:
(3.2)
E[distAt(vk, G0)] ≤ c log k+k·P[distAt(vk, G0) > c log k] .

Recall that distAt(vk, G0) is the length the path
vk, amb(vk), amb2(vk), . . ., until we reach G0. Let Xi
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denote the arrival time of ambi−1(vk). We have, by
uniform choice of the ambassador of a node:

X1 = k

E(Xi|Xi−1) ≤ Xi−1/2

XdistAt (vk,G0) = 0.

Then, for some constant c by Markov’s inequality,

P[distAt(vk, G0) > c log k] = P[Xc log k+1 ≥ 1]

≤ E[Xc log k+1] ≤ 1/k.(3.3)

Substituting into Equations (3.2) and (3.1), we obtain
E[distAt(u,G0)] = O(log t), as desired.

For the lower bound on the expectation, define Yi
and Zi to be the indicator variables for the events: on
the path from vk to G0 there exists a vertex whose
arrival time is in [2i−1, 2i] and [1, 2i], respectively.
Observe that P(Yi = 1|Zi = 1) = 1/2. Additionally,
P(Zi = 1) = Ω(1/|G0|) = Ω(1) for every i < log k.
To see this, consider the first time that the path visits
a node whose arrival time is at most 2i. If this node
is in G0 then Zi = 0, otherwise Zi = 1. Thus
E(Zi) ≥ 2i/(2i + |G0|). Hence P(Zi = 1) = Ω(1),
for every i < log k. Since distAt(vk, G0) is at least the
number of intervals that are visited, we obtain for some
constant c′,

E[distAt(vk, G0)] ≥ E

∑
i≥1

Yi

 =
∑
i≥1

P(Yi = 1)

≥ c′ · log k .(3.4)

Recall that k arrived at time k. In the remainder we
use (3.4) to show that E[distAt(u,G0)] = Ω(log t) for
u chosen arbitrary at random in At. Define u≥t/2 to
be a vertex chosen uniformly at random whose arrival
time is at least t/2, and observe that E[distAt(u,G0)] ≥
1
3E[distAt(u≥t/2, G0)] for large enough t. Therefore,

by Equation (3.4), E[distAt(u,G0)] ≥ c′

3 · log(t/2) =
Ω(log t). 2

3.3 Coupling

The following lemma shows the relation between the
Line Fire and Forest Fire Processes.

Definition 2. The level of a vertex u is its distance to
G0 in the ambassador graph, defined by:

`(u) =

{
0 if u ∈ G0

`(amb(u)) + 1 otherwise.

Lemma 3.6. Let t ≥ τ ≥ 1. Consider the Forest Fire
Process with seed graph G0, conditioned on `(ut) = τ .

Then the sub-graph of Gt, consisting of G0 and of all
vertices on the path from ut to G0 in At, and of all
edges out of those vertices; has the same distribution as
the graph Lτ , with seed graph L0 = G0. In particular
distGt(ut, G0) in the Forest Fire Process conditioned on
`(ut) = τ has the same distribution as distLτ (vτ , G0) in
the Line Fire Process. This also holds for the Random
Walk Process.

Proof. The ambassador graph is constructed indepen-
dently of the Burn process, so we can change the order
in which the edges of Gt are constructed, by generating
the ambassador graph in a first phase, and then adding
the other edges in a second phase. In the first phase, a
node only chooses a random ambassador and connects
to it. In the second phase, every node invokes the burn-
ing process starting with the respective ambassador.

Consider the path in the ambassador graph, going
from ut to G0, and label its vertices

(ut, amb(ut), amb2(ut), . . . , amb`(ut)(ut)) =

= (w`(ut), . . . , w0).

Thus w`(ut) = ut, wi = amb(wi+1) for i < `(ut), and
w0 ∈ G0. We claim that the sub-graph induced by
G0 ∪ {w0, . . . , w`(ut)} in the Forest Fire Process, has
exactly the same distribution as the graph Lτ , produced
by the line fire process with seed G0, for τ = `(ut).

To prove this, we couple the burning decisions
of wi and vi. When i = 0, both graphs are G0.
Assume by induction that the sub-graphs induced by
G0 ∪ {w0, . . . , wi−1}, in the Forest Fire Process and in
the graph Li−1 in the Line Fire Process, are identically
distributed, hence coupled. Then the Burn process,
starting at wi, can clearly also be coupled with the Burn
process of vertex vi, to give the desired result.

The same proof also works for the random walk
process. 2

3.4 Proofs of the Graph results from the Line
results

Proof. [Proof of Theorems 2.1 and 2.3] Since
dist(ut, G0), once defined at time t, never changes, it
suffices to show that E[distGt(ut, G0)] = O(1).

E[distGt(ut, G0)] =

t∑
b=1

P(distGt(ut, G0) > b)

=

t∑
b=1

t∑
τ=1

P(distGt(ut, G0) > b|`(ut) = τ) · P(`(ut) = τ),

where `(ut) is distributed according to the construc-
tion of the ambassador tree in the first phase. From
Lemma 3.6, P(distGt(ut, G0) > b|`(ut) = τ) =
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P(distLτ (vτ , G0) > b). From Lemma 3.1 for the Line
Fire Process (Lemma 3.3 for the Line Walk Process),
P(distLτ (vτ , G0) > b) ≤ cγb. Thus

E[distGt(ut, G0)] ≤
t∑

b=1

t∑
τ=1

cγb · P(`(ut) = τ)

≤
t∑

b=1

cγb ≤ c

1− γ = O(1).

2

Proof. [Proofs of Theorems 2.2 and 2.4] As in the
beginning of the proof of Theorem 2.1, using Lemma 3.6
and exchanging the order of summations, we can write

E[distGt(ut, G0)] =

=

t∑
b=1

t∑
τ=1

P(distLτ (vτ , G0) > b) · P(`(ut) = τ)

=

t∑
τ=1

E[distLτ (uτ , G0)] · P(`(ut) = τ)

≥
t∑

τ=1

cτ · P(`(ut) = τ) = c · E[`(ut)] = Ω(log t),

where for the Line Fire Process we used Lemma 3.2
and Lemma 3.5. For the Line Walk Process, we
use Lemmas 3.4 and Lemma 3.5 instead. Thus
E[distGt(ut′ , G0)] = Ω(log t) for every t′ ≥ t/2, hence
we obtain the desired result.

2

4 Analysis of the Line Fire Process

Throughout Sections 4.1, 4.2, 4.3, and 4.4 we assume
that α ≥ 100, L0 is a directed cycle with |L0| ≥ α20. In
order to prove Lemma 3.1, we define a function φ, such
that for all t, distLt(vt) ≤ φ(vt), and which is more
amenable to analysis. Let δ = α20.

• φ(v) = 0 if v ∈ L0.

• φ(v) = 1 + maxv′∈N (v){φ(v′)} if outdeg(v) < δ.

• φ(v) = max

{
φ(amb(v))− 2, 1 + max v′∈N (v)

v′ 6=amb(v)

φ(v′)

}
otherwise

4.1 High Level Proof Overview

We first give some intuition about the definition of φ.
We would like to argue that no matter what happens
up to time t, dist(vt+1, L0) is less than dist(vt, L0) in
expectation. This does not seem to be possible when

using distance directly; we can construct graphs where
this is not true. However, these graphs are unlikely
to arise under the Line Fire Process. Analysing φ
instead gets around this issue. In fact, we show that
φ(v2t+2) − φ(v2t) has negative expectation, no matter
what the history up to time 2t. A low value φ(vt)
implies that not only is there one short path from vt to
L0, but most paths from vt to L0 are short. However,
note that not all paths are short, in particular the path
vt, vt−1, . . . , v0. Furthermore, while it is true for most
nodes, it is not necessarily true that all nodes are well
connected to the seed graph. Note that the definition of
φ makes a special case for the ambassador when the
degree is large. For an edge (v, u) if u 6= amb(v),
φ(u) < φ(v). We will call edges (v, amb(u)) ambassador
edges.

We start from an arbitrary history (and hence an
arbitrary graph) at time 2t. (See Figure 1a: the nodes
are arranged by their φ value, ambassador edges are
marked red and may point upwards, i.e., an increase in
φ-value, all other edges point strictly downward, i.e.,
a decrease in φ-value.) The good event at time 2t + 1
involves two things: (i) the degree of v2t+1 is at least
δ (ii) All neighbours v of v2t+1, except possibly the
ambassador, are such that φ(v) ≤ φ(v2t) − 2. We
give a high-level idea why this is likely (formal proof
in Lemma 4.5). The burning process stops at any node
only with probability ≈ (1 − α/d)d ≈ e−α, thus it is
quite likely that at least δ nodes are burnt starting at
v2t. For the second part, at the very first stage, i.e.,
neighbours of v2t that are burnt, almost all neighbours
(except possibly the ambassador if the v2t has out-
degree at least δ), will cause a drop in φ-value of at
least 1. Subsequently, if we look at any path in the
burning process, every edge traversed implies that the
φ value dropped by at least 1, except if the edge was
an ambassador (red) edge at a high-degree node, where
it may increase by 2 (see definition of φ). A large
fraction of such red edges are not likely to appear on
any path (ambassador edges of low-degree nodes are not
a problem, by definition of φ). The edges burnt when
v2t+1 arrives are shown in Figure 1b.

Given that the good event at time 2t + 1 happens,
the good event at time 2t+ 2 again involves two things:
(i) the degree of v2t+2 is at least δ (ii) all neighbours
v of v2t+2 satisfy φ(v) ≤ φ(v2t) − 2. First, it is easily
checked that if the good event happens, indeed it is the
case that φ(v2t+2) ≤ φ(v2t)−1, i.e., a decrease. The first
part of the good event is similar to the previous case.
For the second part, we again consider the first step of
the burning process, i.e., the burnt neighbours of v2t+1.
Since most neighbours of v2t+1 have φ-value at most
φ(v2t) − 2, with high probability all burnt neighbours



8

v2t

v2t−1v2t+1

φ(v2t)

φ(v2t)− 1

φ(v2t)− 2

φ(v2t)− 3

(a)

v2t

v2t−1v2t+1

φ(v2t)

φ(v2t)− 1

φ(v2t)− 2

φ(v2t)− 3

(b)

v2t

v2t−1v2t+1

φ(v2t)

φ(v2t)− 1

φ(v2t)− 2

φ(v2t)− 3

v2t+2

(c)

Figure 1: The red edges are ambassador edges. The
blue edges are the neighbours of v2t+1 and the green
edges are the neighbours of v2t+2. When v2t+1 arrives
it is likely to only have very few edges to nodes with
φ-values ≥ φ(v2t) − 1. When v2t arrives it is likely not
to have any neighbours (except of the ambassador) with
φ-values ≤ φ(v2t)− 2.

will satisfy this. Further down in the burn process, it is
unlikely that φ-value increases as argued earlier, since a
large fraction of ambassador (red) edges would have to
be followed which is unlikely (See Figure 1c).

Formally we can show that given any history up to
time 2t, φ(v2t+2)−φ(v2t) has a sub-exponential tail and
negative expectation, which implies by Hajek’s theorem
(Theorem 4.1) that E[φ(v2t)] = O(1).

4.2 Proof of Lemma 3.1

We now formalise the high-level ideas presented in the
previous section. We begin by proving that φ indeed
dominates distance.

Fact 4.1. If v arrives at time t, then

distLt(v, L0) ≤ φ(v).

Proof.

distLt(v, L0) =

0 if v ∈ L0

1 + min
v′∈N (v)

{distLt(v
′, L0)} otherwise

≤


0 if v ∈ L0

1 + φ(amb(v)) if outdeg(v) = 1

1 + min
v′∈N (v)\{amb(v)}

{φ(v′)} otherwise

Comparing the right hand side to the definition of φ, and
noting that in the graph Lt all (directed) edges point to
vertices that arrived earlier (i.e., for any edge (vt, vt′),
t > t′), the result follows by induction on t. 2

The proof of Lemma 3.1 relies on Hajek’s theorem
(Theorem 4.1), which we now state in a slightly simpli-
fied form.

Theorem 4.1. (Hajek’s Theorem [13]) Let (Yt)t≥0
be a sequence of random variables on a probability space
(Ω,F , P ) with respect to the filtration (Ft)t≥0. Assume
the following two conditions hold:

(i) (Majorisation) There exists a random variable Z
and a constant λ > 0, such that E[eλZ ] is finite,
and (|Yt+1 − Yt|

∣∣Ft) ≺ Z for all t ≥ 0; and

(ii) (Negative bias) There exist a, ε0 > 0, such for all t
we have E[Yt+1 − Yt

∣∣ Ft, Yt > a] ≤ −ε0
Then there exist η, C > 0 such that for all b and t we
have P(Yt ≥ b | F0) ≤ Ce−ηb.

Let (Ft)t≥0 denote the history of random choices up
to time t for the line fire process. We state two lemmas
that prove that (φ(v2t+2)− φ(v2t) | F2t) indeed satisfy
the conditions of Hajek’s theorem. The proofs of these
lemmas appear in subsequent subsections.
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Lemma 4.1. (Majorization) Let Z be the random
variable taking values over all even integers greater than
or equal to 4, defined by : P(Z = 2i) = 3−i−1 for
i ≥ 3, and P(Z = 4) = 1 −∑i≥3 P(Z = 2i). Then

(|φ(v2t+2)− φ(v2t)|
∣∣F2t) ≺ Z.

Lemma 4.2. (Negative bias) There a exists con-
stants ε0 > 0 such that for every t we have,

E
[
φ(v2t+2)− φ(v2t)

∣∣F2t, φ(v2t) > 2
]
≤ −ε0

Proof. [Proof of Lemma 3.1] Let Yt = φ(v2t). Whenever
λ < ln(3)/2, we have E[eλZ ] is finite for the random
variable Z defined in the statement of Lemma 4.1.
Thus the sequence (Yt)t≥0 with respect to the filtration
(F2t)t≥0 satisfies the two conditions of Theorem 4.1 by
Lemmas 4.1 and 4.2, hence Lemma 3.1 follows. 2

4.3 Proofs of Lemmas 4.1 and 4.2

We first prove the following side lemma.

Lemma 4.3. P(outdegLt(vt) < δ | Ft−1) ≤ 1
2α .

Proof. We show by induction that the set returned by
Burn(Lt−1, vt−1) has size at least j with probability at
least 1 − (j − 1) · e−α, for 1 ≤ j ≤ δ. Note that since
δ = α20, for α large enough, (δ − 1) · e−α ≤ 1

2α , as
required.

To prove the statement by induction, we invoke
the principle of deferred decisions of random choices
for the activation of the edges. We will also make
a slightly stronger induction hypothesis: There is a
path w0, w1, . . . , wj−1, with vt−1 = w0, such that
Burn(Lt−1, vt−1) will return all of {w0, w1, . . . , wj−1}.
Furthermore, all the edges (wi, wi+1) are activated and
the out-edges of w0, . . . wj−2 are the only edges for which
the random choices have already been made. Clearly for
j = 0, the statement is true, because vt−1 will always be
returned. Suppose the statement is true for j < δ. We
will prove the corresponding statement for j+1. We now
look at the activation choices for the out-edges of wj−1.
The probability that at least one out-edge is activated is
at least 1−e−α (since P(Bin(d,min{1, αd }) = 0) ≤ e−α).
Furthermore, since j < δ, this out-edge cannot be to
any of the vertices {w0, . . . , wj−2}, as there is only one
directed cycle in Lt−1 and this has length δ. Thus, by
induction and union bound, we have the required result.
2

In our proofs, it is useful to rephrase the process
Burn(G,α) defined in Algorithm 2.2 as a tree pro-
cess, rather than a percolation process. We define
BurnBFS(G, v) in Algorithm 4.1. We assume that ver-
tices have a natural order in the graph, for examples for

graphs evolving in time, the vertices are ordered accord-
ing to their time of arrival. Thus, when indexing a set
we assume that the vertices are indexed in this order.

Algorithm 4.1 BurnBFS(G, v)

M0 := {v}
for i = 1, 2, . . . do
Mi := ∅
for all w ∈Mi−1 do

for all edges (w, x) do
activate edge (w, x) with probability
min{1, α

outdegG(w)}
if (w, x) is activated and x 6∈

⋃
j≤i

Mj then

add x to Mi

set parent(x) := w

return
⋃
j≥0

Mj

First, we note that if the burning decisions made
for activation of edges (w, x) in Algorithm 4.1 are
coupled with those made in Algorithm 2.2, the set of
vertices returned by the two processes is exactly the
same. Thus, this is indeed another view of the burning
process. The burning process BurnBFS produces a tree
T with vertices ∪j≥0Mj , and edges (w, x) for which the
if condition in Algorithm 4.1 was satisfied. (We remark
that if Hv is the induced sub-graph of H (defined in
Algorithm 2.2) consisting of all nodes reachable from v,
then T is simply the unique BFS tree of Hv starting at
v using the order on the vertices.)

In the present section, we will fix some graph G (say
some Lt produced by the line fire process), and look at
calls made to BurnBFS with this graph as input. Thus,
the only source of randomness is the activation decision
of the edges. The following is a key technical lemma,
whose proof we defer to the next subsection.

Lemma 4.4. Fix some i, execute BurnBFS(G, v) until
Mi is created (if at all). Let u ∈Mi be a fixed vertex and
let H denote the history of activation decisions made by
algorithm BurnBFS thus far. Let Tu be the (random)
sub-tree of T with root u and let k ≥ 0, then

P(∃u′ ∈ Tu \ {u}, φ(u′) ≥ φ(u) + k | H) ≤ 3−k

12α4
.

We now prove the majorisation Lemma.

Proof. [Proof of Lemma 4.1] Observe that Z can equiv-
alently be defined by P(Z ≥ i) = 3−di/2e/2 if i ≥ 5 and
P(Z ≥ i) = 1 if i ≤ 4.
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Fix the history F2t up to time 2t and let

∆ = φ(v2t+2)− φ(v2t)

= (φ(v2t+2)− φ(amb(v2t+2)))

+ (φ(v2t+1)− φ(amb(v2t+1))).

If ∆ ≥ i ≥ 4 then at least one of the two expressions on
the right hand side exceeds di/2e ≥ 2, so P(∆ ≥ i | F2t)
is less than or equal to

P(φ(v2t+1)− φ(amb(v2t+1)) ≥ di/2e | F2t)

+ P(φ(v2t+2)− φ(amb(v2t+2)) ≥ di/2e | F2t+1).

Thus we need an upper bound on P(φ(v)−φ(amb(v)) ≥
j | F) for j ≥ 2, where F is the history right before the
arrival of v.

Consider the process BurnBFS(G, amb(v)) with
output Tamb(v) executed to construct N (v). By def-
inition of φ, the sub-tree Tamb(v) needs to contain a
node with φ-value at least φ(amb(v)) + j − 1. We use
Lemma 4.4 by setting u = amb(v), k = di/2e − 1, and
can therefore write:
(4.5)

P(∆ ≥ i) ≤ 2
3−(di/2e−1)

36α4
= 3−di/2e 1

6α4 ≤ P(Z ≥ i),

thus ∆ ≺ Z. On the other hand, by definition of φ,
φ(v2t+2) − φ(v2t) ≥ −4, so −∆ ≺ Z. Thus |∆| ≺ Z,
which completes the proof of Lemma 4.1. 2

To prove the Lemma 4.2 (negative bias), we need to
analyse the process over two consecutive steps. We start
from an arbitrary history F2t. We first establish some
properties that after one step hold with high probability
(w.r.t. α).

Lemma 4.5. Fix F2t and consider the arrival of v2t+1.
Let z = φ(v2t). Then, with probability at least 1− 1/α,
the following holds: N (v2t+1) contains exactly one node
with value z (namely, v2t), at most 6α nodes with value
z − 1, and all other nodes have value at most z − 2.
Moreover, outdeg(v2t+1) ≥ δ.

Proof. Consider the process BurnBFS(G, v2t) exe-
cuted to construct N (v2t+1). By Chernoff bounds
(Lemma B.2), with probability at least 1 − 2−6α we
have |M1| ≤ 6α. Assume this holds. What’s the out-
degree of v2t? If it is less than δ, then, by definition of
φ, all nodes of N (v2t), and in particular all elements of
M1, have φ-value at most z − 1. If it is greater than or
equal to δ, then by definition of φ all but one nodes of
N (v2t) have value less than or equal to z − 1, and with
high probability 1 − 6α/δ the set M1 does not contain
the single exceptional node of N (v2t), and, assuming

this holds, all elements of M1 have φ-value less than or
equal to z − 1. Then, Lemma 4.4 (with k = 0) applied
to all sub-trees rooted at nodes of M1 shows that with
probability at least 1 − 6α/(12α4), all other nodes vis-
ited by BurnBFS(G, v2t) have φ-value less than or equal
to z − 2. Assume this holds.

Moreover, by Lemma 4.3, with probability at least
1 − 1/(2α), we have outdeg(v2t+1) > δ. Assume this
holds.

Assuming all those high-probability events hold,
N (v2t+1) satisfies all the statements of the lemma. The
probability that one of the assumptions we made along
the way fails to be realised is, by union bound, at most

2−6α +
6α

δ
+

6α

12α4
+

1

2α
≤ 1

α
.

2

Proof. [Proof of Lemma 4.2] Fix F2t and consider the
arrival of v2t+1. With probability at least 1 − 1/α the
situation described in Lemma 4.5 happens. Assume
that to be the case, and consider the arrival of v2t+2.
Consider the process BurnBFS(G, v2t+1) executed to
construct N (v2t+2). Once again, by Chernoff bounds
(Lemma B.2), with probability at least 1−2−6α we have
|M1| ≤ 6α. Assume this holds. By Lemma 4.5 we know
that v2t+1 has at least δ neighbours, of which only 6α+1
may have φ-value greater than or equal to z − 1. With
probability at least 1− 6α(6α+ 1)/δ, none of the nodes
of M1 are in that set, and therefore all nodes of M1 have
φ-value less than or equal to z−2. Then, Lemma 4.4 (for
k = 1) applied to all sub-trees rooted at nodes of M1

shows that with probability at least 1 − 6α/(36α4), all
other nodes visited by BurnBFS(G, v2t+1) have φ-value
less than or equal to z − 2. Assume that holds.

Now, what’s the out-degree of v2t+2? By
Lemma 4.3, with probability at least 1 − 1/(2α), we
have outdeg(v2t+2) > δ. Assume this holds. Then
by definition of φ and since φ(v2t) > 2, we obtain
φ(v2t+2) ≤ z − 1, and thus

φ(v2t+2) ≤ φ(v2t)− 1.

The probability that one of the assumptions we made
along the way fails to be realised is at most

1

α
+ 2−6α +

6α(6α+ 1)

δ
+

6α

36α4
+

1

2α
≤ 2

α
.

To recap, if we let ∆ = φ(v2t+2)− φ(v2t), we have just
proved that

P[∆ ≤ −1] ≥ 1− 2

α
.

To compute the expectation (implicitly conditioning on
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F2t), we now write

E[∆] ≤
∑
k≥4

k · P(∆ = k) + 3 · P(0 ≤ ∆ ≤ 3)− P(∆ ≤ −1)

≤
∑
k≥4

P(∆ ≥ k) + 3 · 2

α
−
(

1− 2

α

)
.

(4.6)

The first term on the right hand side can be bounded
using Equation (4.5):∑

k≥4
P(∆ ≥ k) ≤ 2

∑
k≥4

3−dk/2e 1
α4 ≤

1

α2
.

We finally obtain

E[∆ | F2t] ≤ −1 +
8

α
+

1

α2
< 0,

hence the negative bias. 2

4.4 Proof of Lemma 4.4

Proof. The main idea of the proof is to couple the
tree process defined by BurnBFS with a Galton-Watson
Process. Let i be as in the statement of the lemma,
and suppose that the sets M0, . . . ,Mi have already been
fixed by the activation decisions in BurnBFS. We look
at u ∈ Mi, the designated vertex in the statement of
the lemma.

Let w be some vertex in T , the tree generated by
BurnBFS, and say w ∈ Mk−1. We are interested in
understanding the random variable that is the number
of children of w in T . Let Mw

k denote the set Mk right
after the activation decisions for edges of vertices in
Mk−1 that are before w in the ordering are completed.
Let S = {x ∈ N (w) | x 6∈ ∪j<kMj and x /∈Mw

k } be the
random variable (depending on the choices made while
determining M0, . . . ,Mk−1,Mw

k \ {w}), that is the set
of potential children of w. Let p = min{1, α

outdeg(w)}.
Let B be obtained by adding each x ∈ S to B with
probability p. Thus, Zw = |B| ∼ Bin(|S|, p) and B
corresponds to the activated edges that lead to nodes
not already in ∪j<kMj ∪Mw

k . We define Rw to be a
random variable: if outdeg(w) < δ, R = 0; otherwise
R = 1 if and only if amb(w) ∈ B. We will call
the edge (w, amb(w)) in T red if Rw = 1. We are
interested in the random variables (Zw, Rw) (note that
they are dependent on random choices made earlier
in the process defined above; however, to minimise
cumbersome notation we will not make this explicit).

We will now define a branching process that is
completely independent of the line fire process. It is
a Galton-Watson process, with some designated red
edges. Let Z ′, R′ be random variables where Z ′ ∼

1+deαe+Poisson(eα) and R′ ∼ Bernoulli(α/δ). Z ′ is the
random variable that defines the offspring distribution
of the Galton-Watson process, and if R′ = 1, the edge
between the node and its “first” child is marked red.
We will show that this process stochastically dominates
the branching process resulting from a call to Burn, in
a particular technical sense.

We have the following claim:

Claim 1. Let w be some node in Mk−1, and let S, p,B
be as defined above. Let (Zw, Rw) be the random
variables defined above for the burn process. Let Z ′,
R′ be as used to define the independent Galton-Watson
process. Then, whenever α ≤ δ, there exists a coupling
of the random variables such that Zw < Z ′ and Rw ≤
R′.

Proof. We look at three cases.

1. If outdeg(w) < δ, then Rw = 0 ≤ R′. So we only
need to define a coupling so that Zw < Z ′

2. If outdeg(w) ≥ δ, but amb(w) 6∈ S (that is amb(w)
is in some Mj for j ≤ k already when the activation
decisions for out-edges of w were made), then Rw =
0, and again we just need to define a coupling so
that Zw < Z ′.

3. Finally, when outdeg(w) ≥ δ and amb(w) ∈ S, we
can couple as follows: note that Zw = Rw + Z̃w,
where Rw ∼ Bernoulli(p) and Z̃w ∼ Bin(|S| − 1, p)
(when outdeg(w) ≥ δ, p = α/outdeg(w), as long as
δ ≥ α). Note that (Zw, Rw) have the exact same
joint distribution as defined above, since effectively
we are making the choice of whether or not amb(w)
should be included in B independently of the other
elements. Since α/outdeg(w) ≤ α/δ, it is clear that
we can couple Rw and R′ so that Rw ≤ R′. Thus,
again it remains only to show a coupling such that
Zw < Z ′.

For all α ≥ 1, it follows that Bin(n, p) is stochasti-
cally dominated by Poisson(eα) whenever p ≤ α/n and
n ≥ eα (see e.g. [17]). When, n < eα, clearly Bin(n, p)
is stochastically dominated by 1 + deαe. The additional
1 in the definition of Z ′ takes care of the strict inequality
made in the claim. This completes the proof. 2

Let T ′ denote the (possibly infinite) Galton-Watson
tree with offspring distribution Z ′ and some edges
marked “red” as defined above. We define a cou-
pling between the (random) sub-tree generated by the
Burn process Tu (rooted at u ∈Mi) and T ′ inductively
below: This results in an injective map σ from V (Tu)
to V (T ′), where V (T ) denotes the vertices in tree T .
Let ρ denote the root of T ′, then σ is defined as follows
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(through coupling and induction on distTu(u,w)). Note
that u is the only vertex with distTu(u, u) = 0.

1. σ(u) = ρ

2. Suppose all w ∈ Tu with distTu(u,w) ≤ ∆ are
mapped under σ to some vertices in T ′. We look at
the time when activation decisions for some w such
that distTu(u,w) = ∆ are made. For each such
w, we apply the coupling defined in Claim 1. Let
(Zw, Rw) be the corresponding random variables
and let (Z ′, R′) be the independent instantiation of
the random variables denoting the children of σ(w)
in T ′. By the coupling, we have Zw < Z ′ and Rw ≤
R′. If Rw = 1, we set σ(amb(w)) to be the “red”
(first) child of σ(w). The remaining Zw−1 children
of w can be mapped to the subsequent Zw − 1
children of σ(w), which is possible by the coupling.
If Rw = 0, all Zw children of w are mapped to the
non-“red” children of σ(w), which again is possible
since Z ′ > Zw. This defines the map σ for all
vertices w, such that distTu(u,w) = ∆ + 1.

We observe that the map σ satisfies the following
properties by definition:

1. If (w, x) is an edge in Tu, then (σ(w), σ(x)) is an
edge in T ′, and furthermore the edge (σ(w), σ(x))
points away from the root.

2. If (w, x) is coloured red in Tu, then (σ(w), σ(x)) is
coloured red in T ′.

Finally, we define a function φ′ : V (T ′)→ Z, on the
nodes of the tree T ′ as follows:

1. φ′(ρ) = φ(u)

2. For w′, let parent(w′) denote the parent of w′ in
T ′. Then,

φ′(w′) =


φ′(parent(w′)) + 2 if (parent(w′), w′)

is red

φ′(parent(w′))− 1 otherwise

We check the following fact:

Claim 2. For every w ∈ V (Tu), φ(w) ≤ φ′(σ(w))

Proof. The proof is based on induction on distTu(u,w).
Clearly, when distTu(u,w) = 0, it must be the case that
w = u, and we have φ′(σ(u)) = φ′(ρ) = φ(u). Suppose,
this holds for all w such that distTu(u,w) ≤ ∆. Consider
an edge (w, x) in Tu, such that distTu(u, x) = ∆ + 1.
Then, we consider two cases:

• If (w, x) is coloured red, x = amb(w). Also, in this
case, the edge (σ(w), σ(x)) in T ′ is also coloured
red. Hence by definition φ′(σ(x)) = φ′(σ(w)) +
2 ≥ φ(w) + 2. On the other hand, by definition
φ(x) ≤ φ(w) + 2. (Note that (w, x) is red, implies
that outdeg(w) ≥ δ and x = amb(w); thus, by
definition of φ, φ(w) ≥ φ(x) − 2.) Hence, we have
φ(x) ≤ φ′(σ(x)).

• On the other hand, if (w, x) is not red, we have
that φ′(σ(x)) = φ′(σ(w)) − 1 ≥ φ(w) − 1. Also by
definition of φ, we know that φ(w) ≥ φ(x)+1 for all
x ∈ N (w) \ {amb(w)}. This completes the proof.

2

Using Claim 2 we have, P(∃u′ ∈ Tu \ {u}, φ(u′) ≥
φ(u) + k | H) ≤ P(∃v′ ∈ T ′ \ {ρ}, φ′(v′) ≥ φ′(ρ) + k).
Thus, it only remains to analyse φ′ on T ′ and prove the
required bound. Let α′ = (1 + deαe + eα); for i ≥ 0,
let bi = (k+ 1)(6α′)i and let Ni be the random variable
denoting the number of nodes of T ′ at distance i from
the root ρ. We have the following:

P(∃v′ ∈ T ′ \ {ρ}, φ′(v′) ≥ φ′(ρ) + k) ≤
(4.7)

≤ P(∃v′ ∈ T ′ \ {ρ}, φ′(v′) ≥ φ′(ρ) + k | ∀i,Ni ≤ bi)
+ P(∃i : Ni ≥ bi)

We bound the two terms of Eq. (4.7) separately. To
bound the first term, we use a union bound:

P(∃v′ ∈ T ′ \ {ρ}, φ′(v′) ≥ φ′(ρ) + k | ∀i,Ni ≤ bi) ≤
(4.8)

≤
∑
j≥1

bj max
v′

P(φ′(v′) ≥ φ′(ρ) + k | dist(ρ, v′) = j)

We now bound for an arbitrary (directed) path
P, with vertices v0 = ρ, v1, . . . , vj = v′ in T ′, the
probability that φ′(v′) ≥ φ′(ρ) + k. Note that as we go
down the tree T ′, the value of φ′ only decreases, except
on red edges. Observe by definition of the tree, that the
number of children of any node, distributed according
to Z ′ ∼ 1+deαe+Poisson(eα) is independent of whether
or not the first node is coloured red. Therefore, by
assuming that every edge along the path can potentially
be red, we are only increasing the probability that for
some node v′, φ′(v′) ≥ φ′(ρ) + k. Note that the
probability that any edge out of a node is red, denoted
by pr is at most α/δ (for the first child of a node,
which always exists since the number of children is at
least 1 + deαe, the probability is pr, for the remaining
it is 0). Let r denote the number of red edges in
the path v0 = ρ, v1, . . . , vj = v′, then the number
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of non-red edges is j − r. Thus, by definition of φ′,
φ′(v′) = φ′(ρ) + 3r − j, and hence for φ′(v′) ≥ φ(ρ) + k
to be true, it must be the case that r ≥ d j+k3 e. Thus,
we have

P(At least
⌈
j+k
3

⌉
edges in P are red) ≤

≤
j∑

b=

⌈
j+k
3

⌉
(
j

b

)
pbr(1− pr)(j−b)

≤
∑

b≥
⌈
j+k
3

⌉
(
ej

b

)b
pbr

≤
∑

b≥
⌈
j+k
3

⌉ (3e · pr)b

≤ (3e · pr)
j+k
3 · 1

1−3epr

Substituting this bound in Eq. (4.8), we get

P(∃v′ ∈ T ′ \ {ρ}, φ′(v′) ≥ φ′(ρ) + k | ∀i,Ni ≤ bi) ≤

≤
∑
j≥1

bj
1

1−3epr

(
(3epr)

1/3
)j+k

≤ (k + 1)
1

1− 3epr

(
(3epr)

1/3
)k∑

j≥1

(
6α′(3epr)

1/3
)j

≤ (k + 1)
1

1− 3epr

(
(3epr)

1/3
)k
· 6α′(3epr)1/3

1− 6α′(3epr)1/3

(4.9)

Now, we analyse the second term of Eq. (4.7). Let
Xi denote the event that Ni ≥ bi. Thus, we are
interested in bounding P(∃i,Xi). Observe, that:

P(∃i,Xi) ≤
∑
i≥1

P(Xi | ¬Xi−1).

We observe that Ni is a sum of Ni−1 independent copies
of Z ′ ∼ 1+deαe+Poisson(eα). Lemma B.3 proves that,

P(Xi | ¬Xi−1) ≤ 2−6eabi−1

Thus, we have:

P(∃i,Xi) ≤
∑
i≥1

2−6eabi−1

≤ 2 · 2−6eab0 = 2 · 2−(k+1)(36eα)(4.10)

Substituting (4.9) and (4.10) in Eq. (4.7), we get
that whenever α ≥ 100, δ ≥ α20, it is the case that
pr ≤ α−19, which concludes the proof of the lemma. 2

4.5 Lower bound: Proof of Lemma 3.2

Proof. As mentioned earlier, the neighbours of a node vt
in the Line Fire process can be represented by the ver-
tices of a tree T rooted at vt−1, in which every node v ap-
pears at most once. Furthermore, the number of edges

percolated by v is Xv ∼ Bin
(
|N (v)|,min

{
1, α
|N (v)|

})
=

Bin
(
|N (u)|, α

|N (v)|

)
.

We define a process P in which, at the arrival of
vt, node vt−1 percolates Yvt−1

∼ Poisson(eα) outgoing
edges u.a.r.. Whenever an edge (v1, v2) is percolated,
v2 percolates Yv2 ∼ Poisson(eα) of it’s outgoing edges
u.a.r.. Let T ′vt be the resulting tree. vt connects then to
all nodes of T ′vt (once). Note that a node can be several
times in T ′vt and we assume that every time it is added,
it chooses Poisson(eα) u.a.r. to percolate independent
of former choices. Since Pr(Xv ≥ k) ≤ Pr(Yv ≥ k) for
k ≥ 1, we can couple the trees Tv and T ′vt such that
if v ∈ T , then v ∈ T ′vt . Let ∆t = distLt(vt, L0) −
distLt−1(vt−1, L0). We have −∞ < ∆t ≤ 1. The
distance of a node v to L0 in Lt equals the number
of nodes on the shortest path plus one. Hence, we
obtain a crude bound on P(∆t = −k) by bounding
P(|T ′vt | ≥ k + 1). As we will argue in the following,
P(|T ′| ≥ k + 1) has an exponential tail distribution.
Observe, that T ′vt is GW-tree with offspring distribution
Poisson(eα). We have

P(∆t = −k|Ft−1) ≤ P(|T ′vt | ≥ k + 1) ≤ e−(k+1),

where the last inequality follows from Lemma 1.9 of [9].
Hence,

E[∆t|Ft−1] ≥ 1 · P(Xvt−1
= 0) +

∑
k≥1

(−k)P(∆t = −k|Ft−1)

≥ min
d≥1
{(1− α/d)d}+

∑
k≥1
−ke−(k+1)

≥ 1− α− 0.4 ≥ 0.5.

Hence, E[distLt(vt, L0)|Ft−1] ≥ distLt−1(vt−1, L0)+1/2.
We have,

E[distLt(vt, L0)] = E[E[distLt(vt, L0)|Ft−1]]

≥ E[distLt−1(vt−1, L0)] + 1/2.

Hence, by repeating this iteratively, we get
E[distLt(vt, L0)] = Ω(t), which yields the claim.
2

5 Analysis of the Line Walk Process

In this section we analyse the Line Walk Process. Upon
arrival, vt performs a random walk on Lt−1 starting
at vt−1 and stopping at any node with probability
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p > 0. After the random walk stops, it connects to
all visited nodes. Hence, the length of the random walk
is distributed as Geom(p),4 and hence the degree of vt
is distributed as 1 +Geom(p) (it always connects to the
ambassador).

Our proof strategy at a high-level is to understand
the neighbourhood of vt, in particular, we are interested
in understanding the oldest neighbour of vt. In this
section, we use the term length of an edge to denote
the temporal difference between the time of arrival of
it’s endpoints. We characterise these lengths in terms
of Galton-Watson trees.

For simplicity, we consider L0 to be a single node,
denoted by v0, with a self-loop; however, all the proofs
in this section are valid for every L0 which is a strongly
connected graph as long as we allow the graphs Lt to
be multi-graphs. Note that since the self loop of L0 is
the only directed cycle, all multiple edges have to point
to v0.

5.1 Characterising Edges of vt through Galton-
Watson trees

To analyse the lengths of the out-edges of vt, it is
useful to apply the principle of deferred decisions for the
random choices made in constructing the graph Lt. We
start the construction process backward starting at time
t, only adding edges as we “need” them. Note that the
edges (vk, vk−1) for k = 1, . . . , t are all deterministically
added in the line walk process, as is the edge (v0, v0).
Let Xvt ∼ Geom(p) denote the length of the random
walk performed upon arrival of vertex vt, starting at
vt−1. We index the edges of vt, so that the zeroth edge
is the ambassador edge (vt, vt−1), the first edge is to the
first vertex encountered in the random walk after vt−1
and so on. In order to determine the first edge traversed
by the random walk (assuming Xvt > 0), we will have
to determine some edges of vt−1, and continue to do so
recursively, making only the random choices that are
needed. It turns out that the random choices we make
can be succinctly modelled as a Galton Watson tree as
we describe next.

Let HalfGeom(p) denote the distribution
Uniform(X) where X ∼ Geom(p).5 Consider a Galton-
Watson tree with offspring distribution HalfGeom(p).
Let T be a tree generated by this process. We define
how we can interpret T to reveal the first out-edge of
vt. Note that the index of the edge out of vt−1 we follow
is exactly distributed as HalfGeom(p), and to determine

4We consider Geom(p) to represent the number of failures when

success probability is p; thus it can take values in the set of non-

negative integers.
5Recall that Uniform(X) chooses a number uniformly at ran-

dom in {0, 1, . . . , X} so is well defined even when X = 0.

this edge, we go back further and apply the same
process. This is what gives rise to the Galton-Watson
Process.

(vt−3,vt−4)

(?,?)(vt−2,?)

(?,?) (?,?)

(?,?)

(?,?)

(?,?)

(vt−1,?)

(a)
(vt−1,?)

(vt−6,?)

(vt−3,vt−4) (vt−4,vt−6)

(vt−5,vt−6)

(?,?)(vt−2,vt−6)

(?,?) (?,?)

(b)
(vt−1,vt−10)

(vt−6,vt−7)

(vt−3,vt−4) (vt−8,vt−9) (vt−9,vt−10)

(vt−7,vt−10)(vt−2,vt−6)

(vt−4,vt−6)

(vt−5,vt−6)

(c)

Figure 2: Interpretation of a Galton-Watson tree to
determine edges of Lt

Before defining this mapping formally it would be
helpful to go through an example. Figure 2a shows a
(random) Galton-Watson tree T . We perform a depth-
first exploration of T assigning labels to the nodes along
the way. The number of children at the root was drawn
from HalfGeom(p), say it was 3. This indicates that we
follow the third edge out of vt−1. Thus, we will label the
root with the end points of this edge, however for now
we don’t know the destination so temporarily it’s label
is (vt−1, ?). To determine its destination we need to
simulate the random walk performed when vt−1 arrived,
which is done at the three children of the root. The
random walk started at vt−2 = amb(vt−1). The number
of children of the first (leftmost) child of the root, also
distributed as HalfGeom(p), say it was 2, indicates that
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the first edge of vt−1 was decided by following the second
edge of vt−2. Temporarily, the label of this node is set
to (vt−2, ?). In Figure 2a, the first child of the node
labelled (vt−2, ?) has no children, this indicates that the
zeroth edge out of vt−3, i.e., the edge (vt−3, vt−4) was
followed when vt−2 arrived and started a random walk
at vt−3. This indicates that the first edge of vt−2, is
(vt−2, vt−4).

Then, the second child of the node labelled (vt−2, ?)
in Figure 2a determines the second step of the random
walk when vt−2 arrived. After the first step, the node
reached was vt−4, so the second step was on some edge
out of vt−4, which is indicated by analysing the subtree.
Continuing, this way, we notice that the first edge of
vt−1 was (vt−1, vt−6). The second edge is determined
by analysing the subtree at the second child of the root
(see Figure 2b). And finally, continuing the depth-first
traversal, we can determine that the third edge of vt−1
was (vt−1, vt−10), and hence the first edge of vt would
be (vt, vt−10) (Figure 2c). It is no coincidence that the
length of the edge (vt−1, vt−10), i.e., (t−1)−(t−10) = 9
is the number of nodes in the tree. This can be verified
by the following observation: Whenever a node is visited
for the first time in the DFS traversal, if vt′ was the last
blue label assigned, the current node receives the blue
label vt′−1. Note that in case the tree is infinite or has
more than t − 1 nodes, at some point of time the label
(v0, ?) is assigned. But we know that all subsequent
edges must point to v0 (see Figure 3). Basically, we
interpret the self loop as infinitely many self-loops, so
all of the zeroth, first, etc. edges of v0 go to v0, so there
is no need to explore the subtrees. Thus, nodes may
have multiple edges to v0; in Figure 3 v5 has at least
two edges to v0.

(v5,v0)

(v4,v0)

(v3,v2) (v2,v0)

(v1,v0)

(v0,v0)

don’t care

Figure 3: When the tree is larger than t − 1, multiple
edges are added to v0

Remark 2. This is why allowing multiple edges is im-
portant; it allows us to determine the degree of a node
without observing the rest of the graph, i.e., the length
of the random walk can be determined without knowing

which edges are being traversed, since if we hit v0, we
continue to stay at v0 for the required number of steps.

We now define formally how the tree T can be
interpreted as a set of edges that are added to Lt,
when starting the construction process backward from
time t. (Also, we will not determine random choices
that are not needed to determine the first out-edge of
vt.) To avoid confusion between the nodes in the graph
Lt and the nodes in the Galton Watson Tree, we will
consistently use w to denote nodes in the Galton Watson
tree. For a node w ∈ T , let parent(w) denote the parent
of w in the Galton Watson tree T . Let children(w)
denote an ordered list of children of w. If w is the root,
parent(w) is undefined, and if w is a leaf, children(w)
is an empty list. We describe how the nodes of the tree
T will be viewed as a set of edges that are added to Lt.
Thus each node w ∈ T will have labels source(w) and
dest(w), which are vertices in Lt. We perform a DFS
traversal on T , with the property that when a node is
visited for the first time during the traversal, a value
for source(w) is set, and when it is visited for the last
time, then the value for dest(w) is set. Initially, for
all nodes w, source(w) =? and dest(w) =?. A special
case in the traversal is that if source(w) = v0, then no
further exploration going down the tree is performed.
If a node w ∈ T has i ∼ HalfGeom(p) children,
this is indicates that the edge (source(w),dest(w)),
was the result of a random walk that followed the
edges (source(w1),dest(w1)), . . . , (source(wi),dest(wi)),
where w1, . . . , wi are the children of w in T . If w
has 0 children, the edge is (source(w), amb(source(w))).
Formally, the traversal by the following rules (recall that
we are determining the edges of vt, by starting a random
walk at vt−1):

1. Let w = ρ be the root node. Set source(w) = vt−1

2. At w, if source(w) = v0, set dest(w) = v0, go to
parent(w) if it exists; otherwise stop.

3. If w has no children and source(w) 6= v0, set
dest(w) = amb(source(w)). Go to parent(w), if
it exists, otherwise stop.

4. If all children of w have both labels set, set
dest(w) = dest(w′), where w′ is the last child of
w. Go to parent(w), if it exists, otherwise stop.

5. If w has some children with both labels assigned
and remaining children with no labels assigned, let
w′ be the last child of w for which both labels
were assigned and w̃ the first child with no labels
assigned. Let source(w̃) = dest(w′), go to w̃.
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6. If no child of w has yet been visited and
source(w) 6= v0, then let w′ denote the first child of
w. Set source(w′) = amb(source(w)). Go to w′.

At the end of the this process, all the edges
(source(w),dest(w)) for every node w ∈ T are added
to the graph Lt. There may be nodes w ∈ T with
dest(w) = amb(source(w)), these are edges of the
form (vk, vk−1) that were already present, and so are
not added. The same is the case when source(w) =
dest(w) = v0; in this case, the subtree of w has no la-
bels and is ignored (see Figure 3). This simply means
that the seed graph L0 was hit while trying to add an
edge out of vt and this means that (vt, v0) will be an
edge in the graph. In particular, note that if T is infi-
nite this will always be the case. Note that if (vt, vt′)
was the first edge out of vt, with t′ 6= 0, the second edge
(if Xvt > 1) is determined by the same process: again
T is generated by the Galton-Watson process with off-
spring distribution HalfGeom(p), the starting label at
the root is now (vt′ , ?) (see Figure 4).

T1
T2

(vt−1,vt−10)

(vt−6,vt−7)

(vt−7,vt−10)(vt−2,vt−6)

(vt−10,vt−14)

(vt−11,vt−12)(vt−12,vt−13)

(vt−13,vt−14)

Figure 4: Illustration of how multiple edges of vt
are determined using independent Galton-Watson tree
processes with offspring distribution HalfGeom(p). The
tree T1 is the same as the tree in Figure 2

Thus, we can summarise the above explanation by
the following fact.

Fact 5.1. Fix vt and let Xvt ∼ Geom(p),
T1, T2, . . . , TXvt be i.i.d. Galton Watson trees with
offspring distribution HalfGeom(p)). Then

• The neighbours of vt are distributed as

vt−1, vmin{0,t−1−∑1
j=1 |Tj |}, . . . , vmin{0,t−1−∑Xvt

j=1 |Tj |}

• Let τ = 1 +
∑Xvt
j=1 |Tj |, and let Lt[τ ] be the subgraph

of induced by by the vertices v0, . . . , vτ . Then,

P
(
Lt[τ ] | Xvt , T1, . . . , TXvt , τ < t

)
= P(Lτ ),

where P(Lτ ) is the probability of generating a specific
graph under the line fire process.

5.2 Proofs of Lemmas 3.3 and 3.4

Let T be a Galton-Watson tree with offspring distribu-
tion HalfGeom(p). It is well-known that if the expecta-
tion of the offspring distribution is strictly larger than
1, then with constant probability, T is infinite. The fol-
lowing lemma bounds the probability for this event in
terms of p.

Lemma 5.1. Let T be a Galton-Watson tree with off-
spring distribution HalfGeom(p). T is infinite with prob-

ability at least 1− 3(1−3p)
p+5 for every 0 < p < 1/3.

Proof. Let X̂n denote the number of nodes of the n-
th generation of T . Let µ = E(X̂1). Consider X1 to be
drawn in the following way: first we draw Z ∼ Geom(p),
and then draw X̂1 uniformly at random from {0, . . . , Z}.
We have E[X̂1|Z = k] =

∑k
i=0 i/(k + 1) = k/2. Hence,

it is implied that µ = E[Z]/2 = (1− p)/(2p). Similarly,

E[X̂2
1 |Z = k] =

∑k
i=0 i

2/(k+1) = k(2k+1)/6, implying

that the variance of X̂1 is

V(X̂1) = E[X̂2
1 ]− E[X̂1]2

= 2E[Z2]+E[Z]
6 − E[X̂1]2

= (1−p)(4−p)
6p2 − (1−p)2

4p2

= (1−p)(p+5)
12p2 ,

where the third equality follows from the facts that
E[Z2] = (1− p)(2− p)/p2 and E[Z] = (1− p)/p.

For µ > 1 it holds that E[Xn] = µn and V(Xn) ≤
V(Bv)
µ(µ−1) · µ2n [11]. By Chebyshev’s inequality P(|Xn −
µn| ≥ µn) ≤ µ(µ−1)

V(Bv) = 3(1−3p)
p+5 . Hence T is infinite with

probability at least 1 − 3(1−3p)
p+5 which yields the claim.

2

Proof. [Proof of Lemma 3.3] The probability at the
arrival of a node vt to create at least one tree T is at least
(1− p). Hence the property that the neighbourhood of

vt is infinite is at least q ≥ (1 − p)
(

1− 3(1−3p)
p+5

)
> 0,

by Lemma 5.1. If T is infinite, then we must have hit a
node of L0 and thus distLt(vt, L0) = 1.

If not, let (vt, vt′) be the longest edge of vt, with

t′ = t−
(

1 +
∑Xvt
j=1 |Tj |

)
> 0. By Fact 5.1, conditioned

on Xvt , T1, . . . , TXvt , the subgraph of Lt induced by

vertices v0, . . . , vt−t′ follows the same distribution as
Lt−t′ . Hence, similarly as before, Lemma 5.1 gives that
the probability for vt−t′ to be connected to L0 is at least
q. Repeating this iteratively gives that the probability
for vt to have a distance of at least j is bounded by
(1− q)j−1. The claim follows since q > 0 is a constant.
2
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We now investigate the setting where p > 1/3.

Lemma 5.2. There exists a constant c = c(p) > 0 such
that P(|T | > n) ≤ (1−c(3− 1

p ))n for every 1/3 < p ≤ 1.

We are ready to prove Lemma 3.4.

Proof. [Proof of Lemma 3.4] Let T1, . . . , TXvt be the
Galton-Watson trees created at the arrival of vt, with
Xvt ∼ Geom(p). Pick Y ∼ Uniform(Xvt). Hence,
(1 + |T1| + · · · + |TY |) and (1 + |TY+1| + · · · + |TXvt |)
follow the same distribution as |T |, where T is a Galton-
Watson tree with offspring distribution HalfGeom(p).

Therefore, by Lemma 5.2, we get

P(1 + |T1|+ · · ·+ |TXvt | > n) ≤ 2P (1 + |T | > n/2)

≤ 2
(

1− c(3− 1
p )
)n/2−1

.(5.11)

Let a be a constant that will be determined later. For
every vi define mi to be (1 + |T1| + · · · + |TXvt |) if
(1 + |T1| + · · · + |TXvt |) ≥ a and 0 otherwise. Observe
that

(5.12) distLt(vt, L0) ≥
(
t−

t∑
i=1

mi

)
/a .

Let γ = (1− c(3− 1
p ))1/2 < 1. By Equation (5.11),

(5.13)

E

[
t∑
i=1

mi

]
≤ 2t

γ ·
∑
j≥a

jγj = 2t
γ ·

γa(a(1−γ)+γ)
(γ−1)2 < t/2 ,

where the last inequality holds for sufficiently large
a. We deduce from Equations (5.12) and (5.13) that
E[distLt(vt, L0)] = Ω(t), as desired.

2

Proof. [Proof of Lemma 5.2] Consider a one-by-one
exploration process of T , e.g., a breadth-first explo-
ration. We maintain a queue of active nodes of T . Ini-
tially we insert the root to the queue and at each time
step i we remove one node from the queue and insert
ξi ∼ HalfGeom(p) nodes to the queue. Let Ai denote the
number of nodes in the queue after time step i. Thus
A0 = 1 and for every i > 0, Ai = Ai−1−1+ξi. Observe
that

P (|Tp| > n) = P (A1, . . . , An > 0)(5.14)

≤ P (An > 0)(5.15)

≤ P

(
A0 +

n∑
i=1

ξi > n

)
(5.16)

= P

(
n∑
i=1

ξi ≥ n
)
,(5.17)

where the inequality follows from Markov’s inequality
For every t ≥ 0 it holds that

P

(
k∑
i=1

ξi ≥ k
)

= P
(
et
∑k
i=1 ξi ≥ etk

)
≤ e−tkE

[
et
∑k
i=1 ξi

]
=
(

E[etξ]
et

)k
,

where the inequality follows from Markov’s inequality.
We obtain

e−tE[etξ] = e−t ·
∞∑
i=0

P(ξ = i) · eti

= e−t ·
∞∑
i=0

∞∑
k=i

(1−p)kp
k+1 · eti

= e−t ·
∞∑
k=0

k∑
i=0

(1−p)kp
k+1 · eti

= e−t ·
∞∑
k=0

(1−p)kp
k+1 ·

k∑
i=0

eti

= e−t ·
∞∑
k=0

(1−p)kp
k+1 · et(k+1)−1

et−1

= p
1−p · 1

et(et−1) ·
∞∑
k=1

(1−p)k(etk−1)
k

= − p
1−p · 1

et(et−1) ·
(
ln((1− (1− p)et)− ln p

)
where in the last equality we used the facts that (1 −
p)et ∈ (0, 1) and p ∈ (0, 1) and that

∑∞
i=1 x

i/i =
− ln(1− x) when |x| < 1. Let γ = et − 1. We obtain:

e−tE[etξ] = − p
1−p · 1

γ(1+γ) · ln
(

1−(1−p)et
p

)
= − p

1−p · 1
γ(1+γ) · ln

(
1− (1−p)γ

p

)
= 1

1+γ ·
∞∑
i=1

(
(1−p)γ
p

)i−1
· 1i

= 1−
(

1− 1−p
2p

)
· γ
1+γ +O(γ2)

= 1− 1
2

(
3− 1

p

)
· γ
1+γ +O(γ2) .

Since p > 1/3, there exists t and an absolute constant
c > 0 such that e−tE[etξ] ≤ 1 − c(3 − 1

p ). We deduce

P(|T | > n) ≤ (1− c(3− 1
p ))n.

2

6 Discussion

The Forest Fire model was proposed by Leskovec et al.
to explain several properties of social networks, shrink-
ing diameter being an important one, in addition to
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densification and heavy-tailed degree distributions [22].
As the graphs generated are directed, we focused on
distance to the seed graph, rather than diameter as
the property of interest. This work shows that in a re-
stricted version of the Forest Fire model, we can prove
that this distance remains bounded, even as the graph
size increases, albeit with some conditions on the seed
graph. We show that qualitatively similar results can
also be obtained in an even more basic model, the ran-
dom walk model. Our upper and lower bounds can be
used to give bounds on the undirected diameter, with
loss of constant factors.

There are several natural open questions. The
obvious one, is whether one can remove the conditions
on the seed graph, or the requirement of multiple-edges
in the random walk case. Our simulation results seem
to suggest that starting with a single node as a seed
graph should also result in similar behaviour. The
next is whether one can address densification. Without
backward burning, it is clear that the out-degree of
any vertex in Gt can be at most logarithmic in t.
This follows from the fact that the edges have to be
on directed paths in the ambassador tree. Thus, we
cannot expect the average edge density to be more than
logarithmic in the number of nodes. Also, for this reason
the out-degrees cannot have a heavy tail. In simulations,
the in-degrees did exhibit power law behaviour.
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A Background: Galton-Watson processes

The analysis uses reductions to Galton-Watson branch-
ing processes. A Galton-Watson process is a stochas-
tic process {Xn} which evolves according to the recur-

rence formula X0 = 1 and Xn+1 =
∑Xn
j=1 ξ

(n)
j , where

{ξ(n)j : n, j ∈ N} is a set of i.i.d. natural number-valued
random variables. The interpretation is as follows: the
process builds a random tree. Xn can be thought of as
the number of descendants of the root in the nth gen-

eration, and ξ
(n)
j can be thought of as the number of

children (in generation n + 1) of the jth of these (nth

generation) descendants. The recurrence relation states
that the number of descendants in the (n + 1)st gener-
ation is the sum, over all nth generation descendants,
of the number of children of that descendant. For more
information, see [23].

B Auxiliary lemmas

Lemma B.1. Let Xn ∼ Bin(n, α/n) for all n. Let
Y ∼ Poi(eα). Let α ≤ 1/e. For all n and k ≥ 1
we have Pr(Xn ≥ k) ≤ Pr(Y ≥ k).

Proof. Fix an arbitrary n and k ≥ 1. Pr(Xn = k) ≤(
n
k

)
(α/n)k ≤ αk/k! ≤ αk

k!
e
eeα ≤

(eα)k

k!
1
eeα = Pr(Y = k).

2

Lemma B.2. (Chernoff bound [26]) Let
X =

∑
iXi be the sum of 0/1 independent random

variables. Let R ≥ 6E[X]. Then Pr(X ≥ R) ≤ 2−R.

Lemma B.3. (Poisson tail bound) Let α ≥ 1. Let
α′ = 1 + deαe+ eα. Let Ni be sum of Ni−1 independent
(1 + deαe + Poisson(eα))-distributed random variables.
Let bi = (6α′)i(k+ 1). Then, P(Ni ≥ bi|Ni−1 ≤ bi−1) ≤
2−6eαbi−1 .

Proof. Due to the independence of the random vari-
ables, we have Ni−1 · Poisson(eα) = Poisson(eαNi−1).
In the following we fix Ni−1 = n for n ≤ bi−1. We
derive, by using the definition bi and by applying the
Poisson tail bound given in [25],

P(Ni ≥ bi|n ≤ bi−1) ≤
≤ P(Poisson(eαn) + n(1 + deαe) ≥ bi|n ≤ bi−1)

≤ P(Poisson(eαn) ≥ (6α′)bi−1 − bi−1(1 + deαe)|n ≤ bi−1)

≤ P(Poisson(eαn) ≥ 6eαbi−1|n ≤ bi−1)

≤ e−eαn(e2αn)6eαbi−1

(6eαbi−1)6eαbi−1

≤ (e2αbi−1)6eαbi−1

(6eαbi−1)6eαbi−1

≤ 2−6eαbi−1 .

2
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